Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol Physiol ; 97(2): 81-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728692

RESUMO

AbstractTropical ectotherms are thought to be especially vulnerable to climate change because they have evolved in temporally stable thermal environments and therefore have decreased tolerance for thermal variability. Thus, they are expected to have narrow thermal tolerance ranges, live close to their upper thermal tolerance limits, and have decreased thermal acclimation capacity. Although models often predict that tropical forest ectotherms are especially vulnerable to rapid environmental shifts, these models rarely include the potential for plasticity of relevant traits. We measured phenotypic plasticity of thermal tolerance and thermal preference as well as multitissue transcriptome plasticity in response to warmer temperatures in a species that previous work has suggested is highly vulnerable to climate warming, the Panamanian slender anole lizard (Anolis apletophallus). We found that many genes, including heat shock proteins, were differentially expressed across tissues in response to short-term warming. Under long-term warming, the voluntary thermal maxima of lizards also increased, although thermal preference exhibited only limited plasticity. Using these data, we modeled changes in the activity time of slender anoles through the end of the century under climate change and found that plasticity should delay declines in activity time by at least two decades. Our results suggest that slender anoles, and possibly other tropical ectotherms, can alter the expression of genes and phenotypes when responding to shifting environmental temperatures and that plasticity should be considered when predicting the future of organisms under a changing climate.


Assuntos
Mudança Climática , Lagartos , Termotolerância , Clima Tropical , Animais , Lagartos/genética , Lagartos/fisiologia , Termotolerância/genética , Florestas , Aclimatação/genética , Aclimatação/fisiologia , Transcriptoma , Expressão Gênica
2.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37875105

RESUMO

The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards.


Assuntos
Genoma , Lagartos , Animais , Genômica , Lagartos/genética , Árvores/genética
3.
Ecol Evol ; 12(10): e9402, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36248670

RESUMO

Understanding the factors that facilitate or constrain establishment of populations in novel environments is crucial for conservation biology and the study of adaptive radiation. Important questions include: (1) Does the timing of colonization relative to stochastic events, such as climatic perturbations, impact the probability of successful establishment? (2) To what extent does community context (e.g., the presence of competitors) change the probability of establishment? (3) How do sources of intrapopulation variance, such as sex differences, affect success at an individual level during the process of establishment? Answers to these questions are rarely pursued in a field-experimental context or on the same time scales (months to years) as the processes of colonization and establishment. We introduced slender anole lizards (Anolis apletophallus) to eight islands in the Panama Canal and tracked them over multiple generations to investigate the factors that mediate establishment success. All islands were warmer than the mainland (ancestral) environment, and some islands had a native competitor. We transplanted half of these populations only 4 months before the onset of a severe regional drought and the other half 2 years (two generations) before the drought. We found that successful establishment depended on both the intensity of interspecific competition and the timing of colonization relative to the drought. The islands that were colonized shortly before the drought went functionally extinct by the second generation, and regardless of time before the drought, the populations on islands with interspecific competition declined continuously over the study period. Furthermore, the effect of the competitor interacted with sex, with males suffering, and females benefitting, from the presence of a native competitor. Our results reveal that community context and the timing of colonization relative to climactic events can combine to determine establishment success and that these factors can generate opposite effects on males and females.

4.
Appl Environ Microbiol ; 88(19): e0053022, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36165625

RESUMO

As rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard (Anolis apletophallus) gut microbiome to climatic shifts of various magnitude and duration. First, to examine the effects of long-term climate warming in the wild, we transplanted lizards from the mainland Panama to a series of warmer islands in the Panama Canal and compared their gut microbiome compositions after three generations of divergence. Next, we mimicked the effects of a short-term "heat-wave" by using a greenhouse experiment and explored the link between gut microbiome composition and lizard thermal physiology. Finally, we examined variation in gut microbiomes in our mainland population in the years both before and after a naturally occurring drought. Our results suggest that slender anole microbiomes are surprisingly resilient to short-term warming. However, both the taxonomic and predicted functional compositions of the gut microbiome varied by sampling year across all sites, suggesting that the drought may have had a regional effect. We provide evidence that short-term heat waves may not substantially affect the gut microbiota, while more sustained climate anomalies may have effects at broad geographic scales. IMPORTANCE As climate change progresses, it is crucial to understand how animals will respond to shifts in their local environments. One component of this response involves changes in the microbial communities living in and on host organisms. These "microbiomes" can affect many processes that contribute to host health and survival, yet few studies have measured changes in the microbiomes of wild organisms experiencing novel climatic conditions. We examined the effects of shifting climates on the gut microbiome of the slender anole lizard (Anolis apletophallus) by using a combination of field and laboratory studies, including transplants to warm islands in the Panama Canal. We found that slender anole microbiomes remain stable in response to short-term warming but may be sensitive to sustained climate anomalies, such as droughts. We discuss the significance of these findings for a species that is considered highly vulnerable to climate change.


Assuntos
Microbioma Gastrointestinal , Lagartos , Animais , Biodiversidade , Mudança Climática , Secas , Lagartos/fisiologia
5.
Integr Org Biol ; 4(1): obac025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958165

RESUMO

Sexual size dimorphism is widespread in nature and often develops through sexual divergence in growth trajectories. In vertebrates, the growth hormone/insulin-like growth factor (GH/IGF) network is an important regulator of growth, and components of this network are often regulated in sex-specific fashion during the development of sexual size dimorphism. However, expression of the GH/IGF network is not well characterized outside of mammalian model systems, and the extent to which species differences in sexual size dimorphism are related to differences in GH/IGF network expression is unclear. To begin bridging this gap, we compared GH/IGF network expression in liver and muscle from 2 lizard congeners, one with extreme male-biased sexual size dimorphism (brown anole, Anolis sagrei), and one that is sexually monomorphic in size (slender anole, A. apletophallus). Specifically, we tested whether GH/IGF network expression in adult slender anoles resembles the highly sex-biased expression observed in adult brown anoles or the relatively unbiased expression observed in juvenile brown anoles. We found that adults of the 2 species differed significantly in the strength of sex-biased expression for several key upstream genes in the GH/IGF network, including insulin-like growth factors 1 and 2. However, species differences in sex-biased expression were minor when comparing adult slender anoles to juvenile brown anoles. Moreover, the multivariate expression of the entire GH/IGF network (as represented by the first two principal components describing network expression) was sex-biased for the liver and muscle of adult brown anoles, but not for either tissue in juvenile brown anoles or adult slender anoles. Our work suggests that species differences in sex-biased expression of genes in the GH/IGF network (particularly in the liver) may contribute to the evolution of species differences in sexual size dimorphism.

6.
J Exp Biol ; 224(Pt 2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33328289

RESUMO

If fitness optima for a given trait differ between males and females in a population, sexual dimorphism may evolve. Sex-biased trait variation may affect patterns of habitat use, and if the microhabitats used by each sex have dissimilar microclimates, this can drive sex-specific selection on thermal physiology. Nevertheless, tests of differences between the sexes in thermal physiology are uncommon, and studies linking these differences to microhabitat use or behavior are even rarer. We examined microhabitat use and thermal physiology in two ectothermic congeners that are ecologically similar but differ in their degree of sexual size dimorphism. Brown anoles (Anolis sagrei) exhibit male-biased sexual size dimorphism and live in thermally heterogeneous habitats, whereas slender anoles (Anolis apletophallus) are sexually monomorphic in body size and live in thermally homogeneous habitats. We hypothesized that differences in habitat use between the sexes would drive sexual divergence in thermal physiology in brown anoles, but not slender anoles, because male and female brown anoles may be exposed to divergent microclimates. We found that male and female brown anoles, but not slender anoles, used perches with different thermal characteristics and were sexually dimorphic in thermal tolerance traits. However, field-active body temperatures and behavior in a laboratory thermal arena did not differ between females and males in either species. Our results suggest that sexual dimorphism in thermal physiology can arise from phenotypic plasticity or sex-specific selection on traits that are linked to thermal tolerance, rather than from direct effects of thermal environments experienced by males and females.


Assuntos
Lagartos , Adaptação Fisiológica , Animais , Tamanho Corporal , Ecossistema , Feminino , Masculino , Caracteres Sexuais
7.
Biol Lett ; 16(8): 20200474, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750271

RESUMO

Introduced species can become invasive, damaging ecosystems and disrupting economies through explosive population growth. One mechanism underlying population expansion in invasive populations is 'enemy release', whereby the invader experiences relaxation of agonistic interactions with other species, including parasites. However, direct observational evidence of release from parasitism during invasion is rare. We mimicked the early stages of invasion by experimentally translocating populations of mite-parasitized slender anole lizards (Anolis apletophallus) to islands that varied in the number of native anoles. Two islands were anole-free prior to the introduction, whereas a third island had a resident population of Gaige's anole (Anolis gaigei). We then characterized changes in trombiculid mite parasitism over multiple generations post-introduction. We found that mites rapidly went extinct on one-species islands, but that lizards introduced to the two-species island retained mites. After three generations, the two-species island had the highest total density and biomass of lizards, but the lowest density of the introduced species, implying that the 'invasion' had been less successful. This field-transplant study suggests that native species can be 'enemy reservoirs' that facilitate co-colonization of ectoparasites with the invasive host. Broadly, these results indicate that the presence of intact and diverse native communities may help to curb invasiveness.


Assuntos
Lagartos , Parasitos , Animais , Ecossistema , Espécies Introduzidas , Ilhas
8.
J Theor Biol ; 477: 108-126, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31173758

RESUMO

It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes.


Assuntos
Modelos Biológicos
9.
Hist Philos Life Sci ; 37(4): 345-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452775

RESUMO

Philosophy of biology is often said to have emerged in the last third of the twentieth century. Prior to this time, it has been alleged that the only authors who engaged philosophically with the life sciences were either logical empiricists who sought to impose the explanatory ideals of the physical sciences onto biology, or vitalists who invoked mystical agencies in an attempt to ward off the threat of physicochemical reduction. These schools paid little attention to actual biological science, and as a result philosophy of biology languished in a state of futility for much of the twentieth century. The situation, we are told, only began to change in the late 1960s and early 1970s, when a new generation of researchers began to focus on problems internal to biology, leading to the consolidation of the discipline. In this paper we challenge this widely accepted narrative of the history of philosophy of biology. We do so by arguing that the most important tradition within early twentieth-century philosophy of biology was neither logical empiricism nor vitalism, but the organicist movement that flourished between the First and Second World Wars. We show that the organicist corpus is thematically and methodologically continuous with the contemporary literature in order to discredit the view that early work in the philosophy of biology was unproductive, and we emphasize the desirability of integrating the historical and contemporary conversations into a single, unified discourse.


Assuntos
Biologia/história , Filosofia/história , Empirismo , História do Século XX , Vitalismo
10.
Stud Hist Philos Biol Biomed Sci ; 48 Pt B: 162-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25220402

RESUMO

This article critically examines one of the most prevalent metaphors in contemporary biology, namely the machine conception of the organism (MCO). Although the fundamental differences between organisms and machines make the MCO an inadequate metaphor for conceptualizing living systems, many biologists and philosophers continue to draw upon the MCO or tacitly accept it as the standard model of the organism. The analysis presented here focuses on the specific difficulties that arise when the MCO is invoked in the contexts of development and evolution. In developmental biology the MCO underlies a logically incoherent model of ontogeny, the genetic program, which serves to legitimate three problematic theses about development: genetic animism, neo-preformationism, and developmental computability. In evolutionary biology the MCO is responsible for grounding unwarranted theoretical appeals to the concept of design as well as to the interpretation of natural selection as an engineer, which promote a distorted understanding of the process and products of evolutionary change. Overall, it is argued that, despite its heuristic value, the MCO today is impeding rather than enabling further progress in our comprehension of living systems.


Assuntos
Evolução Biológica , Formação de Conceito , Biologia do Desenvolvimento , Vida , Metáfora , Seleção Genética , Biologia , Genética
11.
J Hist Biol ; 47(2): 243-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23868493

RESUMO

The writings of Joseph Henry Woodger (1894-1981) are often taken to exemplify everything that was wrongheaded, misguided, and just plain wrong with early twentieth-century philosophy of biology. Over the years, commentators have said of Woodger: (a) that he was a fervent logical empiricist who tried to impose the explanatory gold standards of physics onto biology, (b) that his philosophical work was completely disconnected from biological science, (c) that he possessed no scientific or philosophical credentials, and (d) that his work was disparaged - if not altogether ignored - by the biologists and philosophers of his era. In this paper, we provide the first systematic examination of Woodger's oeuvre, and use it to demonstrate that the four preceding claims are false. We argue that Woodger's ideas have exerted an important influence on biology and philosophy, and submit that the current consensus on his legacy stems from a highly selective reading of his works. By rehabilitating Woodger, we hope to show that there is no good reason to continue to disregard the numerous contributions to the philosophy of biology produced in the decades prior to the professionalization of the discipline.

12.
Stud Hist Philos Biol Biomed Sci ; 44(4 Pt B): 669-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23810470

RESUMO

The machine conception of the organism (MCO) is one of the most pervasive notions in modern biology. However, it has not yet received much attention by philosophers of biology. The MCO has its origins in Cartesian natural philosophy, and it is based on the metaphorical redescription of the organism as a machine. In this paper I argue that although organisms and machines resemble each other in some basic respects, they are actually very different kinds of systems. I submit that the most significant difference between organisms and machines is that the former are intrinsically purposive whereas the latter are extrinsically purposive. Using this distinction as a starting point, I discuss a wide range of dissimilarities between organisms and machines that collectively lay bare the inadequacy of the MCO as a general theory of living systems. To account for the MCO's prevalence in biology, I distinguish between its theoretical, heuristic, and rhetorical functions. I explain why the MCO is valuable when it is employed heuristically but not theoretically, and finally I illustrate the serious problems that arise from the rhetorical appeal to the MCO.


Assuntos
Vida , Metáfora , Humanos , Biologia Sintética
14.
Stud Hist Philos Biol Biomed Sci ; 43(1): 152-63, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22326084

RESUMO

The concept of mechanism in biology has three distinct meanings. It may refer to a philosophical thesis about the nature of life and biology ('mechanicism'), to the internal workings of a machine-like structure ('machine mechanism'), or to the causal explanation of a particular phenomenon ('causal mechanism'). In this paper I trace the conceptual evolution of 'mechanism' in the history of biology, and I examine how the three meanings of this term have come to be featured in the philosophy of biology, situating the new 'mechanismic program' in this context. I argue that the leading advocates of the mechanismic program (i.e., Craver, Darden, Bechtel, etc.) inadvertently conflate the different senses of 'mechanism'. Specifically, they all inappropriately endow causal mechanisms with the ontic status of machine mechanisms, and this invariably results in problematic accounts of the role played by mechanism-talk in scientific practice. I suggest that for effective analyses of the concept of mechanism, causal mechanisms need to be distinguished from machine mechanisms, and the new mechanismic program in the philosophy of biology needs to be demarcated from the traditional concerns of mechanistic biology.


Assuntos
Biologia/história , Formação de Conceito , Vida , Modelos Biológicos , Filosofia/história , Ciência/história , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX
15.
Stud Hist Philos Biol Biomed Sci ; 41(3): 202-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20934641

RESUMO

Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activity of a living organism is thus conceived as the result of the activities and interactions of its elementary constituents, each of which individually already exhibits all the attributes proper to life. This paper surveys some of the key episodes in the history of biological atomism, and situates cell theory within this tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory's conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the physicochemical reductionism of mechanistic biology.


Assuntos
Biologia/história , Biologia Celular/história , Células , Dissidências e Disputas/história , História do Século XVIII , História do Século XIX , História do Século XX , Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...